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Control of electron spin and orbital resonances in quantum dots through spin-orbit interactions
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The influence of a resonant oscillating electromagnetic field on a single electron in coupled lateral quantum
dots in the presence of phonon-induced relaxation and decoherence is investigated. Using symmetry argu-
ments, it is shown that the spin and orbital resonances can be efficiently controlled by spin-orbit interactions.
The control is possible due to the strong sensitivity of the Rabi frequency to the dot configuration (the
orientation of the dot and the applied static magnetic field); the sensitivity is a result of the anisotropy of the
spin-orbit interactions. The so-called easy passage configuration is shown to be particularly suitable for a
magnetic manipulation of spin qubits, ensuring long spin relaxation times and protecting the spin qubits from
electric field disturbances accompanying on-chip manipulations.
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I. INTRODUCTION

The spin properties of few-electron quantum dots have
recently been extensively studied, in the hope that a localized
spin can serve as a qubit, a central building block of a quan-
tum computer.'~* Spin, compared to orbital degrees of free-
dom, was anticipated to have a much longer coherence time.’
Fast experimental progress during the last few years sup-
ported this assumption—Ilong electron spin relaxation® and
dephasing times'®!2 have been measured in quantum dots.

If a quantum dot electron spin is to form a qubit, DiVin-
cenzo’s criteria have to be fulfilled:'® (i) The existence of a
qubit—the two states of an electron spin naturally encode the
information bit. (ii) The initialization of the qubit—in the
presence of a magnetic field, at low enough temperatures, the
system relaxes into the spin-polarized ground state spontane-
ously. (iii) Readout—this can be done by a spin-to-charge
conversion scheme.'*! (iv) Coherent manipulation—a first
important step toward efficient individual spin manipulation
has been the recent demonstration of magnetically driven
Rabi oscillations.'® The above criteria for an electron spin in
a quantum dot to work as a qubit have been met at the proof-
of-the-principle level. The current effort is aimed at the inte-
gration of the requirements, with the final goal of a (v) scal-
able qubit design.

In a scalable architecture, the quantum dots in an array
should be addressed individually. This places stringent con-
straints on the spatial extent of the manipulating electromag-
netic fields—one speaks of fields generated on chip. If the
spin is manipulated by a magnetic field which is produced
locally (say, by an oscillating current in a wire nearby the
dot), the electron inevitably feels an accompanying oscillat-
ing electric field. This electric field appears due to imperfect
screening of the dot from the circuitry—the field produced
directly by the changing magnetic field, VXE=-¢,B, is
negligible.!” The electric field strongly disturbs the orbital
part of the electron wave function and, if spin-orbit coupling
is present, also couples to the spin, imposing limits on the
strength of the applied magnetic field (in Ref. 16, this limit
was 1.9 mT). As a result, the speed of the operation, given
by the maximal achievable Rabi frequency, is limited as
well.
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Fortunately, the accompanying electric fields can be help-
ful for the qubit control. Through the spin-orbit interaction,
the field induces similar spin oscillations'”~!* as result from
magnetic fields. From a practical point of view, the electric
fields here are even preferable, since one can control them
better than magnetic fields; the possibility of electrically in-
duced spin oscillations is currently being pursued experimen-
tally. However, there is a drawback, since the electric Rabi
frequency is expected to depend on dot parameters, primarily
through materials dependent spin-orbit coupling. The Rabi
frequencies due to magnetic fields depend on the field
strength alone.

How effective are, in comparison, oscillating electric and
magnetic fields in inducing Rabi spin oscillations? This is a
question of primary relevance for undergoing experiments.
We need to know how large fields are required to induce
Rabi oscillation of a given frequency, as well as how the
Rabi frequency depends, for a given field strength, on the
parameters of the dot and especially, how stable the oscilla-
tions are against the fluctuations of these parameters. Our
paper aims to answer the above questions. In particular, we
quantify the dipolar electric and magnetic couplings in the
spin resonance of a single electron confined in a quantum
dot. We consider the textbook resonance scheme in which
the ground state of an electron is Zeeman split by an applied
static magnetic field. The oscillations between the two split
states are induced by oscillating magnetic and electric fields,
with the resonance achieved if the field frequency equals to
the Zeeman energy.

It has already been proposed theoretically that due to the
presence of the spin-orbit interactions in a single quantum
dot, the electric field can indeed be effective in inducing spin
resonance.!” For a typical lateral single GaAs quantum dot,
in a static magnetic field of 1 T, an oscillating electric field
of 10° V/m is as effective as an oscillating magnetic field of
1 mT. Here, we consider a more general case of the experi-
mentally relevant double dot setup. Our main result is that
the anisotropy of the spin-orbit interactions, which reflects
the anisotropy of the underlying GaAs heterostructure, al-
lows for an effective control over the electric field efficiency
in spin manipulations. Our findings provide guidelines for
dot configurations for two possible strategies: If a local elec-
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tric field is chosen for the spin manipulation, we show how
its efficiency can be maximized. If a magnetic field is cho-
sen, the coupling due to the accompanying electric field is
unwanted and we show that the electric effects can be sup-
pressed by lowering the magnitude of the static magnetic
field and/or by orientating the magnetic field along certain
symmetry directions. Particularly, in an easy passage
conﬁguration,20 the otherwise most effective electric field
component can be completely blocked from disturbing the
spin.

While the spin resonance study is our main goal, we also
investigate the electrically and magnetically induced orbital
resonances, in which the resonant states are the two lowest
orbital states of the same spin. A qubit represented by these
two states is called a charge qubit. Our study is motivated by
an observation, that in the presence of the spin-orbit interac-
tions, an analog to electrically induced spin resonance should
exist; the magnetic field should be able to induce oscillation
between spin alike states. We show that this is indeed true.
However, for realistic values of the materials parameters, the
magnetic field is, expectedly, much less effective than the
electric field.

We use realistic parameters for electrically defined single
and coupled lateral dots defined in a [001] grown GaAs het-
erostructure. We treat the problem numerically by an exact
diagonalization of the full single-electron Hamiltonian. We
support our numerical results with analytical arguments
based on an effective spin-orbit Hamiltonian and the degen-
erate perturbation theory. Our model incorporates the elec-
tron relaxation and decoherence rates caused by acoustic
phonons in a realistic way; the rates we use have been found
to be in a very good agreement with the experimental data
for magnetic fields above 1 T both in single’?° and double
dots.®

The paper is organized as follows. In Sec. II, we describe
the model of the electron in the dissipative phonon environ-
ment under oscillating electric and magnetic fields. In Sec.
III, we derive an effective spin-orbit Hamiltonian which al-
lows a symmetry analysis of the problem. With this Hamil-
tonian, we evaluate the matrix elements of the oscillating
magnetic and electric fields for the case of spin (Sec. IV) and
orbital (Sec. V) resonances. Finally, in Sec. VI, we describe
the system in the steady state, where we show how to obtain
the Rabi frequency and decoherence rates from a steady state
measurement.

II. MODEL

Consider a single electron in a double quantum dot?!
formed in a two dimensional electron gas in a (001) plane of
a GaAs/AlGaAs heterostructure. The effective Hamiltonian
is

H:H0+HBR+HD+HD3S (1)
where
H0= T+ Vc"f‘Hz. (2)

The kinetic energy is T=%k?/2m with the effective electron
mass m and kinetic momentum #k=-iAV. The double quan-
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FIG. 1. The orientation of the potential dot minima (denoted as
the two circles) with respect to the crystallographic axes (x=[100]
and y=[010]) is defined by the angle 8. The orientation of the
inplane magnetic field is given by the angle 7.

tum dot is described here by the confinement
1
Velr) = Emwé min{(r — d)% (r + d)*}, (3)

representing two alike potential minima of a parabolic shape,
centered at +d. The in-plane orientation of the double dot
with respect to the crystallographic axes x and y is defined by
o, the angle between d and x. A single dot with the confine-
ment_energy Ep=fiwy and the confinement length [,
=m\h/mawy is defined by the limit d=0. Alternatively to giv-
ing the interdot distance d, the double dot can be character-
ized by the tunneling energy OF, equal to the half of the
difference of the energies of the two lowest orbital states.??
The electron feels an in-plane magnetic field B whose orbital
effects can be neglected for fields lower than ~10 T. The
Zeeman term is H,=puo-B, where w=(g/2)up is the renor-
malized magneton, g is the conduction band g factor, ug is
the Bohr magneton, and o are the Pauli matrices. The spin
quantization axis is defined by the direction of the magnetic
field. The angle between B and x is denoted as vy. The ge-
ometry is summarized in Fig. 1.

The spin-orbit coupling in our confined system is de-
scribed by three terms.”> The Bychkov-Rashba
Hamiltonian,2+23

2

h
Hye=——(ok, — o.k,). 4
BR m ZBR(O-x y O-y x) ( )

is present due to the heterostructure asymmetry, while the

linear and cubic Dresselhaus Hamiltonians,26-2
2
p= M(— ok, + U),ky), (5)
Hpsy = yokk; — ok k), (6)

are due to the lack of the bulk inversion symmetry.

In our numerical calculations, we use bulk GaAs material
parameters: m=0.067m,, g=—0.44, and v,=27.5 eV A>. For
the coupling of the linear spin-orbit terms, we choose /g
=1.8 um and [p=1.3 um; the values used to fit a recent
experiment.?? For the confinement length, we take I,
=30 nm, corresponding to the confinement energy E,
=1.2 meV.
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We now describe the influence of the phonon environment
as well as of the oscillating electric and magnetic fields. The
phonon environment leads to the relaxation?®-3! and decoher-
ence expressed, in the Markov and Born approximations, by
the time derivative of the diagonal and off-diagonal elements
of the reduced density matrix of the electron p (Ref. 32)
(upperscript “ph” stands for phonons to discriminate from
other contributions to the time derivative which appear later),

a?hpii == E 2L ypji + E 21 Pk (7a)
k k

Fpy==2 Cy+Tipy == vijpy- (7b)
k

Here, 2I';; is the relaxation rate from the electron state i to j
due to the piezoelectric and deformation potential interac-
tions of the electron with acoustic phonons. There is no ad-
ditional phonon channel for the decoherence v;; apart from
the relaxation since the phonon density of states vanishes for
zero phonon energy, I';=0. We do not consider nonphonon
mechanisms of dephasing, which are important at low (sub-
tesla) magnetic fields. To allow for a finite temperature, one
can suppose a detailed balance: I';;=7I";;, where 7=exp(
~fiw;;/ kgT). In the calculations below, we consider tempera-
ture much lower than the orbital excitation energy. For ex-
ample, the experiment Ref. 16 was done at temperature of
100 mK, corresponding to ~0.01 meV, while a typical exci-
tation energy of the used quantum dot was about 1 meV. In
this limit, a transition into a higher orbital level has a negli-
gible rate.

In addition to phonons, the electron is subject to oscillat-
ing electric and magnetic fields, which contribute through the
following Hamiltonian:

H=[e& .r+ uB. o]cos wt = #Q cos wt. (8)

Only the in-plane components of the oscillating electric field
are relevant. The oscillating magnetic field is perpendicular
to the plane, Bz, simulating the conditions in the
experiment.'® In the numerical calculations, we set E
=1000V/m as a realistic guess for the experimental setup™
and B=1 mT, a typical value from the experiment.'® We sup-
pose that the frequency w is close to the energy difference of
a given pair of states—resonant states—denoted by indices a
and b, such that o= w,,=(E,—E,)/%>0. In the rotating
wave approximation,®> which we adopt, the oscillating field
influences only the two resonant states, contributing to the
time derivative of the density matrix (superscript “of” stands
for the oscillating field),

¢ ¢ i VL _iA
(9;) Paa =~ (9? Pbb = Eﬂbapabel '~ EQabeae ' t’ (93)

i i A
&F'pap=— 5(pbb — Paa) Qupe ™, (9b)

where A=w,,— is the detuning from the resonance.

The time evolution of the density matrix, given by Egs.
(7a), (7b), (9a), and (9b), can be easily solved if one neglects
all other states but the two resonant.*** Such an approxima-
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tion makes sense if the electron cannot escape from the two
state subspace. Roughly speaking, the effective rate out of
the subspace must be much smaller than the rates for the
transitions restoring the electron in. This, for example, means
that the ground state must be one of the resonant states,
which is the case here. Another interesting counterexample is
optical shelving,?> whereby the electron can be trapped in an
intermediate dark state—this is a crucial ingredient of an
optical spin readout of the nitrogen vacancy centers in
diamond.3 There are parameter values for our model where
the three lowest electron states can realize such a scheme,
but we do not discuss it in this paper. We work in the regime
in which the two level approximation is justified, as follows
also from our numerical results. The validity of the two level
approximation also implies that the decoherence rate is given
by the relaxation only,

yab=7ba:Fba+Fab=Fbu(l+T)’ (10)

a fact that we will use later.

Suppose now that the electron is in the ground state ini-
tially. After the resonant field is turned on, the populations of
the two resonant states start to oscillate, meaning that after a
certain time, the electron will be in the excited state, then
comes back to the ground state, and so on. Since these Rabi
oscillations are coherent, they can realize a single qubit ro-
tation, one of the basic building blocks of quantum compu-
tation. The time after which the populations switch is pro-
portional to the inverse of the frequency of the Rabi
oscillations (Rabi frequency) ). A larger Rabi frequency
then means a faster single qubit operation. To better assess
the suitability for quantum computation, one has to take into
account also the decay of the Rabi oscillations due to deco-
herence. In our model, the magnitude of the oscillations de-
cays exponentially with the rate roughly proportional to the
decoherence rate 7,,. Therefore, to minimize the error in a
single qubit operation, it is desirable to maximize the ratio
Q/vy,,, which quantifies how many single qubit operations
one can do during the decoherence time. We note that from
the observed decaying Rabi oscillations in the time
domain,'®!® both €) and y,, can be extracted.

Finally, we note that in the two resonant states approxi-
mation, there are three important rates: decoherence 7,,, de-
tuning A, and the field matrix element |(),,|. If the the last
one is not dominant, then either v, is large and the damping
is too strong to observe Rabi oscillations or A is large and
the magnitude of the oscillations is small>—both cases are
not of interest here. We consider the case when the field
matrix element is indeed dominant. It holds then that the
matrix element equals the Rabi frequency,

0= |‘Q’ba

, (11)

and is therefore of crucial importance. In the next, we ana-
lyze in detail how the field matrix element due to electric and
magnetic oscillating fields depends on system parameters. To
simplify the analysis of the spin-orbit influence, we begin
with a derivation of an effective spin-orbit Hamiltonian.
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III. EFFECTIVE SPIN-ORBIT HAMILTONIAN

It is useful to remove the linear spin-orbit terms in Eq. (1)
by applying a unitary transformation,’” leading to a new
Hamiltonian,

H' =e¢’HeS=Hy+H,, (12)
where
i i
S= TBR(WX—X%) - @(wx—y%) (13)

is a transformation matrix and

H=Hps+H? + HY + H?) (14)

lin
is an effective spin-orbit interaction. In addition to the cubic
Dresselhaus term Hps, H; comprises the following parts:

"
HY = 4—(102 — Igp)o(xk, - yk,), (15)
m
HY =— uBo,(xhf + yhy), (16)
@_ Y 2 2 Yer2
HD3 - [4kxk) - O-z({yskykx} - {x’kxkv})] - [k
ZlBR - le
+ o ({r .k k2t = {y.k D). (17)

Higher order terms and a constant factor were omitted in H,.
The curly brackets denote the anticommutator, while h; is an
effective spin-orbit vector specified below.

For the following discussion, the symmetries of the terms
in Eq. (14) are important. First, each term has a definite time
reversal symmetry: H(Zz) is antisymmetric, while the other
terms are time reversal symmetric. Second, the spatial sym-
metry of a particular term is defined by a combination of
variables x, y, k,, and ky it contains. To exploit the spatial
symmetry of the confinement [Eq. (3)], we rotate the (origi-
nally crystallographic axes) coordinates such that the new £
lies along d. The coordinates change according to

x—xcosd—ysind, y—ycosdS+xsind, (18)

and similarly for k, and k,. The rotation leaves Eq. (15)
unchanged. In Eq. (16), the effective linear spin-orbit cou-
plings A} and A acquire the following form:

B = Iy cos(y— 6) — I sin(y+ ), (19)

) = g sin(y— 6) — I, cos(y+ 8). (20)

It is important that these couplings can be selectively tuned
to zero by orienting the static magnetic field B in a certain
direction (y) dependent on the orientation of the double dot
(8). The result of the rotation in Eq. (17) is not presented
here; we will discuss only its most relevant terms.

We can obtain analytical results in reasonable quantitative
agreement with the numerics in the lowest order degenerate
perturbation theory by exploiting the symmetries of the prob-
lem. The orbital eigenfunctions of H, [Eq. (2)] in an in-plane
magnetic field form a representation of C,, symmetry
group.?? There are four possible symmetry classes which
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FIG. 2. (Color online) The lowest part of the energy spectrum of
Hamiltonian H, [Eq. (2)] in zero magnetic field as a function of the
tunneling energy (SE,) in the units of the confinement energy E,.
Each eigenfunction belongs to one of the four symmetry classes of
C,,, which are denoted by different color/type of the line. Spin
indices are omitted.

transform upon inversions along (rotated axes) £ and ¥ as 1,
x, xy, and y, respectively. A relevant part of the double dot
spectrum is shown in Fig. 2. Several eigenstates are labeled
by I' with indices, where the bottom index denotes the spatial
symmetry of the state (four symmetry groups), while the
upper indices labels states within the symmetry group—this
notation was introduced in Ref. 22. The two lowest orbital
states will play the most important role: the ground state F(l)o
is symmetric both in x and y (often denoted as the bonding
molecular orbital), and the first excited orbital state Féo is
antisymmetric in x and symmetric in y (antibonding).

If a magnetic field is applied, each line in Fig. 2 splits into
two by the Zeeman term lifting the degeneracy. Assuming a
negative g factor (for GaAs quantum dots) and a positive B,
a spin down state (denoted by |) has a higher energy than a
spin up state (7). Another important consequence of a finite
Zeeman energy is the anticrossing of states F?(f and F;?,
influence of which we take into account using the degenerate
perturbation theory. The exact eigenfunctions (denoted by an
overline) of the Hamiltonian H' can be written as a combi-
nation of the solutions of H, (denoted by I" as in Fig. 2): the
three lowest states, in the lowest order of the degenerate
perturbation theory, are

10 77 100
1:(1)? =~ F(l)(T) + <F?)0H1£1]0>F£ tos 1)
11~ E2
1177 7200
00~ artpe pry e CEO @)
1]~ L4y

11 10
- « Ly HiTyp)
R R 200 pi Ly+- . (23)
21~ Ly
The dots denote the rest of an infinite sum through the eigen-

functions of H,. The anticrossing is described by the coeffi-
cients
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B = arg(cSE)sin[arctan(|4c/ SE|)/2], (24)
a=\1-p?, (25)

which depend on the energy difference SF =E??—Eé? and the
coupling c=<F;(T)H 11"?(1)) between the unperturbed crossing
states.

From the above expression for the coupling c, it follows
that the anticrossing is caused by the part of H; with the
spatial symmetry of x, which is the symmetry of F;?. After
the rotation [Eq. (18)], the only term with the x symmetry in
Egs. (15)—(17) is the first term in H(ZZ). Therefore, by orient-
ing the magnetic field such that A7=0, one can turn the anti-
crossing into a crossing, S=0. Note that also Hp; contains a
term of the x symmetry; one can still get #7=0 since this
term only slightly shifts the required position of the magnetic
field.?® Changing the anticrossing into a crossing has pro-
found consequences on the spin relaxation time, as was
found in Ref. 20. As we will see below, this is similarly
important also for the electrically induced spin resonance.

There are other possible formulations of the unitary trans-
formation Eq. (12). The transformation was first used in the
context of quantum dots in Ref. 37 which neglected the cubic
Dresselhaus term, but kept the corrections of the third order
in the spin-orbit couplings. In our notation, this correction is

HE) =[S, HZY3. (26)
This term, which we neglected, together with Eq. (15), was
interpreted as a vector potential of a spin-orbit originated
magnetic field.?’

If the confining potential is harmonic (d=0 in out model),
the unitary transformation can be generalized to remove ex-
plicitly also the lowest order mixed Zeeman-spin-orbit term
H(ZZ).38 The price to be paid is the appearance of spin depen-
dent mass and other parameters. However, this possibility is
specific to the potential form and nothing can be done with
the cubic Dresselhaus term.

An elegant form of the unitary transformation together
with the perturbation theory is worked out in Ref. 17, where
an effective Hamiltonian for a set of degenerate states is
derived in a compact form using an inverse of Liouville su-
peroperator. However, the inverse is not known for other
than harmonic potentials if the Zeeman term is present; the
inverse is not known at all for the cubic Dresselhaus term.

The effective Hamiltonian presented here is independent
of the form of the confinement potential and reveals the sym-
metry of the spin-dependent perturbations. In a symmetric
potential, such as our double dot, simply by inspecting the
symmetry of the terms allows us to identify the term respon-
sible for a given process, be it spin relaxation or electrically
induced transition. Equations (15)—(17) hold also if an out of
plane component of the magnetic field B, is present, pro-
vided that (i) the operator k includes also the vector potential
of this component, k——i2V +¢eA(B,), and (ii) there is an
additional contribution to H(Zz), proportional to B, (see Ref.
28).
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Using the effective spin-orbit Hamiltonian and the ap-
proximations for the eigenstates, we now quantify the indi-
vidual contributions of the oscillating fields to the matrix
element (),,,. We will point to the origin of these contribu-
tions and show how they can be used to control the electron
spin and orbital resonances.

IV. MATRIX ELEMENTS: SPIN RESONANCE

By spin resonance, we call processes in which the two
resonant states are the ground state f‘l)? and its Zeeman split

counterpart l:(l)(j. We label the corresponding transition matrix
element by the subscript “spin,”
F ~00| &) F| 7500
Qspin = <F] I|QF|FIL ’ (27)
where the superscript F stands for the particular part of O we
consider.
Before we go into specifics, we recall the Van Vleck can-
cellation which is present in Eq. (27) due to time reversal

symmetry. Consider a Hermitian operator O. Let us write the
matrix element in the form

(CHIOITT) = (rEOre) + 60, (28)
where we singled out the contribution due to spin-orbit cou-

pling as 80. If the first term is different from zero (the un-

perturbed states are coupled by é) 60 can be usually ne-
glected. If the first term vanishes, and we are away from an
anticrossing, S<<1, the time reversal symmetry gives an im-
portant information about 80. Indeed, if O has a definite
time reversal symmetry, T(0)=1(=1) when being symmetric
(antisymmetric), using Egs. (21) and (22) for the matrix el-
ement in the lowest order in H,, we get’*-3°

T(H)T(O) )
I(T) - E{,—a' ,

(29)

~l . 1
80 = X (MO} XTI H T (

0 1
ij,o ll_EiO'

where i denotes the symmetry class, j denotes, for brevity,
both upper orbital indices, and o denotes the spin. In this
lowest order, the contributions from the constituents of H,;
are additive and can be considered separately. Therefore, the
first order contributions of the terms with the same time re-
versal symmetry as O [that is if T(H,)T(0)=1] will be sup-
pressed by a factor of the order of uB/E,, compared to the
matrix elements such as Eq. (27), but between states with
different spatial indices. At zero magnetic field, the two
terms in the brackets in Eq. (29) cancel exactly—this is re-
ferred to as the Van Vleck cancellation. Near the anticross-
ing, the terms containing coefficients « and 8 dominate other
terms in Egs. (22) and (23) and the matrix elements are then
proportional to these coefficients; the Van Vleck cancellation
does not occur.

The above general results can be applied to the spin reso-
nance due to magnetic and electric fields. The oscillating

magnetic field [ﬁfl= uB.o.] couples directly the unperturbed
states,

045310-5



PETER STANO AND JAROSLAV FABIAN

PHYSICAL REVIEW B 77, 045310 (2008)

TABLE 1. Analytical approximations for the dipole matrix elements and energy differences. For each
quantity the definition, unit, expression, and limits for small and large interdot distances are given. In some
cases, the expression is too lengthy and only the asymptotics are given. The expression for E, is given in
Ref. 22. The interdot distance measured in the units of the confinement length is used, D=d/l.

Definition Unit Expression D<1 D>1
X, (T lo D 5 D
_ / -27p?
%, (T3 r) ly Vime L 5
_ 4
Y, (ry'lyr lo < < L
XY Ik, 1) i? D -3 Do
5 o B
RN 2D N
EN-E® E, Vybpe 1 De D’
Ey'-EY E, 3 1
E}'-EY E, 1 1 1
0B = auB,, (30) element of the magnetic field is constant, up to a narrow

spin

so that we can neglect the spin-orbit contribution to the ma-
trix element, &X).

On the other hand, the electric field dipole operator (hQ)

=e&.r) does not couple the unperturbed states. As Q is now
time reversal symmetric, the contributions of all terms in H,

but H(Zz) are suppressed. For the electric field along the ro-
tated X axis, the matrix element at the anticrossing is
0%, = BeE X]. (31)
Away from the anticrossing,
2(E; - EY
B

spin

Ol =— e h ,LLBE|X|2 .
(B} - EY")* - 4(uB)’

The spatial symmetry (here x) of the dipole operator selects
only eigenfunctions of the symmetry x in the sum. Only H, @
[Eq. (16)] contains a term of the x symmetry, proportional t0
hi. In the above sum, each state j (with energy F») contrib-

utes proportionally to its dipole matrix element X - To get an
analytical result close to the numerics, one needs to include
the two lowest eigenfunctions in the sum in Eq. (32).

If the electric field is along the rotated y axis, the anti-
crossing does not influence the matrix element, since y di-
pole operator of the electric field does not couple the ground
and anticrossing states. Then, an analogous expression to Eq.
(32) holds at (up to a factor a multiplying some terms in the
sum) or away from the anticrossing,

2(E, - EY°)
E}~ EY'7 ~ 4(uB)*’

(33)

05, =&, hv,uBE Y (
Here, it is enough to include the lowest eigenfunction of y
symmetry in the sum. The dipole elements and the energy
differences, computed by approximating the unperturbed
functions I by symmetrized single dot orbitals,?” are sum-
marized in Table L.

Fully numerical results for the matrix elements as a func-
tion of the magnetic field are shown in Fig. 3(a). The matrix

region of suppression due to a, since it depends only on the
strength of the oscillating magnetic field [Eq. (30)]. The ma-
trix elements of the electric field [Egs. (32) and (33)] are
proportional to the Zeeman energy uB—the spin resonance
is more sensitive to electric disturbances as the magnetic
field grows, while at zero magnetlc field, the electric field is
ineffective. At the anticrossing, stm is strongly enhanced
(by 2 orders of magnitude) as described by Eq. (31), while
prm develops a small dip similar to Q7% .

It can be seen in Fig. 3(b), where the matrix elements are
plotted as functions of the tunneling energy, that the spin
resonance is much more sensitive to the electric field along

the double dots x axis than to a perpendicular field. This

X
LLLL L e L1 LA R

2 -1 -1 2 3 -4

10 10 1 100510 10 107 10

magnetic field [T] o E /E,

FIG. 3. Calculated matrix elements between the resonant states
due to magnetic and electric oscillating fields. The two upper panels
[(a) and (b)] show the matrix elements (), for the spin resonance,
while the two lower panels show orbital resonance elements ().
On the left, in (a) and (c), the elements are functions of the static
magnetic field, with a fixed tunneling energy of 20% of the con-
finement energy. On the right, in (b) and (d), the elements are func-
tions of the tunneling energy at a fixed magnetic field B=1 T. The
dots are oriented along [100], while the static magnetic field lies
along [010].
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FIG. 4. Calculated matrix elements for the spin [upper two pan-
els (a) and (b)] and the orbital [lower two panels (c) and (d)] reso-
nance due to oscillating magnetic and electric fields as functions of
v, the orientation of the static magnetic field, B=1 T. The tunneling
energy is 20% of the confinement energy. On the left, in (a) and (c),
the dots are oriented along [100], that is, 5=0. On the right, in (b)
and (d), the dots are oriented along [110], 5=45°.

difference is strengthened at the anticrossing. Only in the
truly single dot case (d=0 or d=»), the electric field influ-
ence is isotropic. We can also conclude from the single dot
values that the matrix elements of a magnetic field of 1 mT
and an electric field of 10 V/m are comparable in magni-
tude in the static magnetic field of the order of teslas. This
means that in the experiment,'® in which no electrically in-
duced signal was observed, the electric field is likely consid-
erably lower than the estimated value of 10* V/m.

Similar to the spin relaxation rates,”%*? the matrix element
of the resonant electric field is highly anisotropic. The pos-
sible control over the resonance is demonstrated in Fig. 4(a),
where the matrix elements are shown as functions of the
orientation of the static magnetic field. The magnetic field
matrix element is independent on vy, as follows from Eq.
(30). The electric field matrix elements are anisotropic, with
the dependence given by the effective spin-orbit couplings /]
and /. By a proper orientation of the static magnetic field, it
is thus possible to turn off the contribution due to the electric
field pointed along a given direction. In particular, the elec-
tric field along X is not effective (hj=0) at vy
=arctan(lj/lzz) = 38°. The electric field along y is ineffec-
tive if y=arctan(lgg/ ) = 58° since here h{=0. These condi-
tions were obtained from Egs. (19) and (20) by setting =0
(the dots oriented along [100]). Different orientations of the
dots change the conditions for the effective spin-orbit cou-
plings to be zero. For example, in Fig. 4(b), the dots are
oriented along [110], that is, §=45° and the effective cou-
plings A} and A} are zero at y=45° and 135°, respectively,
independent of the spin-orbit parameters. If the electric field
points along a general direction, it is still possible to turn the
matrix element off by properly orienting the magnetic field.
However, in a general case, the desired position of the mag-
netic field is defined not only by the effective couplings A}
and A} but also by all terms in Egs. (32) and (33).
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In the easy passage configuration, defined by 4]=0, the
spin relaxation time does not suffer a drastic suppression due
to the anticrossing, as was shown in Ref. 20. In addition, the
spin resonance is insensitive to the otherwise most effective
electric field component—along X. Such electric fields are
inevitably present if the spin qubit is manipulated by an on-
chip generated magnetic field.'® On the other hand, on-chip
manipulations seem inevitable in a scalable system, where it
must be possible to address the qubits selectively. The easy
passage configuration thus protects the spin against the un-
wanted electric fields and provides a stable Rabi frequency
over a wide range of parameters values, if the qubit is ma-
nipulated by an oscillating magnetic field.

V. MATRIX ELEMENTS: ORBITAL RESONANCE

By orbital resonance, we mean processes in which the the
resonant states are the lowest orbital states, so that the tran-
sition matrix element is

Qf, = @AY, (34)

A similar Van Vleck suppression as in Eq. (29) takes place

also now, if the operator O acts only on the spin subspace
(that is, it is the Zeeman term). This suppression again favors
the contribution due to H(Zz) compared to the rest of H;. If the
anticrossing, dominates the matrix element due to B, is
ij;b:—,B*,uBz, while away from the anticrossing, we get

(Ey’ - EY')?
(Ey" - EV)? - 4(uB)*

Qgiy =~ uBIiX, (35)
Contrary to the case of electrically induced spin resonance,
the oscillating magnetic field can induce transitions also at
zero static magnetic field, as seen in Fig. 3(c). However, the
matrix element of the magnetic field becomes unimportant if
the electric field in the x direction is present since such an
electric field is much more efficient for the orbital resonance,

QirYb = egx)?l > (36)

because it couples unperturbed states directly.

If the electric field is oriented along y, it is much less
effective because the linear spin-orbit terms do not contribute
in the first order. Here, for a nonzero matrix element in Eq.
(34), the perturbation H, has to contain a term which is spin
diagonal with the spatial symmetry xy. The only such a term
in H, is the term originating in the first term of Hg; [Eq.
(17)]. After the rotation of the coordinate system, this term
becomes —(2v,/lpg)cos(20)k.k,, leading to the matrix ele-
ment,

4(EY - EY)
(B3 = EY) = () - BV
(37)

Qg;’b = eé',,l_/li cos 25XY
T pe

In small magnetic fields (<1 T), this contribution dominates
the matrix element compared to the contributions from other
parts in H;, such as sz ), contributing in the second order.
Note that there is no term with appropriate symmetry (spin
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diagonal, spatially xy) of H; coming from a mixture of Hp,
and Hp;, making Qi{b a specific effect due to the mixed
cubic Dresselhaus and Bychkov-Rashba interactions. This
example demonstrates the usefulness of the information
about the symmetry contained in Egs. (15)—(17). By simple
inspection of the symmetry, one can recognize which term
needs to be considered for a specific situation.

The dependence of the matrix elements on the static mag-
netic field orientation 7y is shown in Figs. 4(c) and 4(d). The
magnetic field matrix element is proportional to /7 [see Eq.
(35)]. The direct coupling through the electric field along £ is
independent of y. The matrix element of the electric field
along y, as given in Eq. (37), is independent of vy and cannot
be set to zero by changing the magnetic field orientation, as
seen in Fig. 4(c). However, there is some dependence to be
seen and the dependence is striking for a orientation of the
dots. The reason is that Eq. (37) is the dominant contribution
to the matrix element only up to a certain value of the static
magnetic field—in higher fields, the second order contribu-
tion from H(Zz) will dominate. Since there is already a visible
dependence in Fig. 4(c), we can estimate the crossover mag-
netic field to be 1 T for our parameters. In Fig. 4(d), the
contribution of Eq. (37) is zero exactly since 6=45°. There-
fore, the second order contribution to the matrix element
coming from H(Zz) is seen. The possible dependence of the
matrix element on 7y can decide whether the matrix element
is induced by linear spin-orbit terms (depends on 7y) or the
mixed cubic-linear terms (does not depend on ). This could
be used as a detection for the presence of the cubic Dressel-
haus term. Unless the electric field is oriented exactly along
the y axis, no oscillating magnetic field influence or aniso-
tropy can be observed due to the high effectiveness of the
electric field along x.

After having analyzed the control over the field matrix
element or, to the same effect, over the Rabi frequency, we
will now study the steady state solution of the density matrix.
We will show that the Rabi frequency and decoherence,
which have been obtained in Refs. 10 and 16 from the ob-
servation of the decaying Rabi oscillations, can be obtained
alternatively from the steady state current measurement.

VI. RESONANT FIELD INFLUENCE IN THE STEADY
STATE

In this section, we are interested in the steady state solu-
tion of the density matrix, denoted by p and defined as the
solution with constant occupations,

(" +dNp;=0, Vi, (38)

where the two contributions to the time derivative are those
in Egs. (7a), (7b), (9a), and (9b). Even though it is not cur-
rently measurable in a single electron system, we include in
our list of interesting steady state parameters the absorption,

W= Epy (39)

defined as the energy gain of the electron due to the oscillat-
ing field.
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After the decay of the Rabi oscillations, the system is in
the steady state, where the occupations are constant. In this
case, the time derivative of the density matrix due to the
oscillating field [Egs. (9a) and (9b)] can be simplified to (see
Ref. 3 for the derivation)

a;)fpaa == xfphh = 2(pbh - paa)]’ (40)

where the induced rate

2
J= |Qbu| Yba . (41)
4 A+,
The zero time derivative of the occupations in the steady
state can be interpreted as a balance between two competing
processes: relaxation [Egs. (7a) and (7b)] which drives the
system toward the thermodynamical equilibrium (pp/ P,
=I,/T',,), and an oscillating field induced transition [Eq.
(40)] equilibrating occupations of the resonant states (pp,
=p,.)- The effectiveness of the oscillating field in driving the
system out of thermal equilibrium is characterized by the
induced rate J [Eq. (41)]. Away from the resonance, the os-
cillating field is less effective in influencing the system,
which is reflected by the (Lorentzian shape) decay of the
induced rate.

Our numerical strategy to obtain the steady state density
matrix p is as follows: We diagonalize the coupled dots elec-
tron Hamiltonian [Eq. (1)] (Ref. 22) and compute the relax-
ation rates using Fermi golden rule.”® We choose a pair of
resonant states, {a, b}, and after evaluating (),,, we find the
induced rate according to Eq. (41). Finally, we find the
steady state density matrix by solving the set of linear equa-
tions defined by Eq. (38). A different method, with the oscil-
lating field treated exactly, was used for single dot in intense
oscillating fields,*'*? 3 orders of magnitude larger than the
fields considered here.

We can analytically reproduce the numerical results by
the two state approximation discussed in the above. The
physics is then characterized by the number

1
4 ’Ybarba '

J(r) = Fl;;‘”w:wha = |Qba|2 (42)
which is the induced rate at the resonance, measured in the
units of the relaxation rate between the resonant states.

Two limits can be identified, according to J;,. If the in-
duced rate dominates the relaxation, Ji> 1, the occupations
of the two resonant states are close to being equal, while if
Jy<<1, the system is close to the thermal equilibrium. The
interpretation of 2J as the electron outscattering rate due to
the oscillating field, as it follows from Eq. (40), is reassured
by the result form the absorption. We expect the absorption
to be proportional to a transition rate from the excited state to
the ground state times the energy dissipated at this transition.
If Jy<1, the transition rate is 2J. In the opposite limit, Jj,
> 1, the outscattering due to the oscillating field is strong and
the transition rate for the dissipation is limited by the relax-
ation rate. The frequency full widths at half maximum
(FWHMs) also differ for the two limits (see Table II for
analytical results).
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TABLE II. (a) Steady state, value at resonance, and frequency full width at half maximum (FWHM) S,
squared for the excited state occupation p,,,, the induced rate J, and absorption W. Note that the FWHM of
the excited population is defined only if the temperature is low enough such that J;= 7(1+17)/(1-37). (b) The
value at the resonance and frequency full width at half maximum of the excited population and absorption in

the two limits.

(a) Steady state At resonance FWHM (Sw?,)
Pob AL YR Jo+T 8Jo(1+Jp) +47(1+7+3Jp) y

2J+T,,(1+7) 2+ 147 T-rl+7437y) "
J |‘Qba|27ba “Q'ba‘z/“")/ba 4yia

2

W . J4A 34 L 20D 4(1+T+2J6)72

P14 74201 Ty, ba 1+7+2J) 147 0
(b) Limit At resonance FWHM (6w ;)
5bb J6>1 1/2—(1—7')/2]6 2|Qb,,|2'yba/rba(l—37')
_ r <
Pob Jo<l (1= () 4%

-

w J6> 1 Ebarba(l_T) 2|Qba|27ba/rba(l+7')
W Jp<1 2EpJ" (1=7)/(1+7) 497,

Figure 5 presents our numerical results for the induced
rate, excited population width, and decoherence as functions
of the tunneling energy for the spin and orbital resonance.
Both resonances are in the regime of Ji> 1, where the deco-
herence is revealed by the FWHM of the induced rate (see
Table II), while the relaxation rate can be obtained if both the
induced rate at resonance and FWHM of the excited popula-
tion are known, too. Due to Eq. (10), the relaxation rate is
indiscernible from the decoherence in the figure and Jj, can
be directly determined. For the spin resonance, Jj, varies be-
tween 10° and 10!; the limit expressions in Table II are
exact with this precision. The upward dips in FWHM and the
decoherence rate are due to the anticrossing of the spin and

15
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FIG. 5. Calculated induced rate J at resonance (solid line), de-
coherence v, (dashed line), and the FWHM of the excited popula-
tion (dot-dashed line) as functions of the ratio of the tunneling
energy OF, and the confinement energy E, for (a) spin resonance
and (b) orbital resonance. The static in-plane magnetic field is B
=1 T. If the solid line is above (under) the dashed one, it means that
Jo>1 (Jy<<1). The dots are oriented along [100], while the static
magnetic field lies along [010].

orbital states.?? It is interesting that the induced rate is not
influenced by the anticrossing. This is because both the
square of the matrix element and the decoherence (equal to
the relaxation) in Eq. (41) depend on the anticrossing in the
same way and the contributions cancel. Also, note that the
rates characterizing the oscillating field are very different in
the transient and the steady state regimes. While the steady
state characteristic rate J is ~10'3 s™!, looking at Fig. 3(b),
one can see that the Rabi frequency for the same parameters
is only ~10% s,

Compared to the spin resonance, the orbital resonance is
much less sensitive to the anticrossing since only in a very
narrow region at the anticrossing the relaxation rate acquires
a factor of one-half.?® One also sees that Jj is smaller, mean-
ing we are closer to the regime of Jj;<1 which can be
reached by lowering the amplitude of the oscillating electric
field. In that regime, the decoherence can be obtained from
the FWHM of the excited population or from the induced
rate.

After identifying the appropriate regime of high or low
induced rate, one can obtain the decoherence rate and the
Rabi frequency using the expressions from Table II provided
the induced rate J and the excited state population p,, (and
their full widths) can be measured. In turn, these two param-
eters could be measured if the dot is connected to leads and
a current flows through the dot, as shown theoretically in
Ref. 43. In Ref. 3, it is shown, using a simpler model, that
the measurement can be done by changing the coupling be-
tween the dot and the leads. Namely, for a small coupling,
the current is proportional to the excited state population,
while for a large coupling, the current measures the induced
rate.

Even though probing of electron decoherence using the
steady state quantities, as we discussed it here, was proposed
relatively long time ago, up to now it was not experimentally
achieved. Among problems hindering such observation is
heating induced by the microwave field, which enables the
electron in the ground state to escape the dot by a thermal
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excitation. Similarly, the electron can be expelled from the
dot by the oscillating electric field in a process known as the
photon assisted tunneling (see Ref. 4).

VII. CONCLUSIONS

We have studied electrically and magnetically induced
spin and orbital resonances of a single electron confined in
coupled lateral quantum dots. We have taken into account
relaxation and decoherence due to an acoustic phonon envi-
ronment, with the rates computed by Fermi golden rule.
Resonant oscillating electromagnetic fields are capable to in-
duce transitions between electron eigenstates. We have fo-
cused on the oscillating field matrix elements, equal to the
Rabi frequency, for the spin and orbital resonances.

We have given an effective spin-orbit Hamiltonian which
allows us to quantify the spin-orbit influence on the transi-
tion matrix element using symmetry considerations. Specifi-
cally, for electrically induced spin resonance, we have shown
how the spin-orbit anisotropy allows us to control the matrix
element by both the strength and the orientation of the static
magnetic field. These conclusions give hints for optimal
quantum dot configurations for the case when (i) the spin is
manipulated by an oscillating electric field, whereas its influ-
ence is desired to be maximized, and (ii) the spin manipu-
lated by an oscillating magnetic field, when the effect of the
electric field on the spin is desired to be minimized. Connect-
ing with our previous work, we have found that the easy
passage provides not only increase spin relaxation times, but
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also stability against electric field disturbances, making it a
suitable arrangement for spin qubit realization.

In a double dot, the electric field is most effective in spin
manipulation if it lies along the dots’ axis and the matrix
element is strongly influenced by the anticrossing (a crossing
of different spin states lifted by spin-orbit interactions). An
important feature is that the electric field is less effective if
the magnitude of the static magnetic field is lowered. Oscil-
lating electric fields of order of 1000 V/m can be more ef-
fective than oscillating magnetic fields of 1 mT if the static
magnetic field is of the order of a tesla. For these parameters
in a GaAs quantum dot, the Rabi frequency of 1 GHz is
achievable for the spin manipulation using an electric field.

Finally, we have studied the influence of the resonant
fields on the steady state. We proposed the induced rate as a
single characteristic parameter. We have analyzed the steady
state occupations, the induced rate, and the absorption, as
well as the full widths for both spin and orbital resonances.
We have used those results to show how to obtain the deco-
herence rate and the Rabi frequency from the steady state
characteristics. In turn, these characteristics can be obtained
from a steady state current measurement.
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